组件名称:线性回归

  [版本号:5] [更新时间:2019-10-28]

简介

  线性回归:线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = wx+e,e为误差服从均值为0的正态分布。回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。【该组件执行后可以生成模型,后续将保存在左侧组件栏下方的模型列表,直接拖拽到画布使用或在快速应用页面直接使用。】

输入和输出

  输入端口个数:1

  输出端口个数:1

参数配置

参数名称 参数说明 参数默认值 是否必填
正则化项系数 平衡loss和正则化项的大小以使得模型的训练误差和泛化能力达到最优,可选 0 必填
弹性网络混合参数 弹性网络混合参数值在[0,1]的范围之间。当值为0时为L2范数正则化惩罚项,当值为1时为L1范数正则化惩罚项可选 0 必填
模型训练优化算法 包括l-bfgs,normal.默认l-bfgs是BFGS算法在受限内存时的一种近似算法,也即一种受限内存的拟牛顿优化方法;normal是使用normalequation去解决线性回归模型的一种方法可选 l-bfgs 必填
是否设置截距项 Yes 必填
最小收敛误差 1e-06 必填
最大迭代次数 100 必填

字段配置

字段名称 字段说明 字段默认值 是否必配
特征列 输入模型的样本特征列,必须是数值型字段列必选 必填
标签列 输入模型的样本类别标签列,必须是数值型字段列必选 必填

运行后生成的字段列

  运行之后生成的字段列是该组件新增的字段列,在结果数据中会体现出来,后续节点可以选择到这些字段列。

字段名称 字段说明 字段类型
__prediction 预测结果字段列 双精度类型

results matching ""

    No results matching ""